Kinetics of Topological Stone–Wales Defect Formation in Single-Walled Carbon Nanotubes
نویسندگان
چکیده
منابع مشابه
Optimization of Xe adsorption kinetics in single walled carbon nanotubes
Closed end ~10, 10! single walled carbon nanotubes ~SWNTs! have been opened by oxidation at their ends and at wall defect sites, using ozone. Oxidation with ozone, followed by heating to 973 K to liberate CO and CO2, causes etching of the nanotube surface at carbon atom vacancy defect sites. The rate of adsorption of Xe has been carefully measured as a function of the degree of nanotube etching...
متن کاملSingle - Walled 4 . Single - Walled Carbon Nanotubes
Single-walled carbon nanotubes (SWCNTs) are hollow, long cylinders with extremely large aspect ratios, made of one atomic sheet of carbon atoms in a honeycomb lattice. They possess extraordinary thermal, mechanical, and electrical properties and are considered as one of the most promising nanomaterials for applications and basic research. This chapter describes the structural, electronic, vibra...
متن کاملMolecular Dynamics in Formation Process of Single-Walled Carbon Nanotubes
The mechanism in the nucleation and formation of single-walled carbon nanotubes (SWNTs) was investigated using molecular dynamics simulations. When initial state was chosen so that carbon and nickel atoms were randomly distributed in a simulation domain, the formation of random cage structure made up of carbon atoms, which had a few nickel atoms inside it, was observed at the time of 6 ns. The ...
متن کاملCutting single-walled carbon nanotubes.
A two-step process is utilized for cutting single-walled carbon nanotubes (SWNTs). The first step requires the breakage of carbon-carbon bonds in the lattice while the second step is aimed at etching at these damage sites to create short, cut nanotubes. To achieve monodisperse lengths from any cutting strategy requires control of both steps. Room-temperature piranha and ammonium persulfate solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2016
ISSN: 1932-7447,1932-7455
DOI: 10.1021/acs.jpcc.5b11682